SQL 基础(二)
2022-11-29 14:35
Sixdegree Lab
2022-11-29 14:35
订阅此专栏
收藏此文章

在“SQL 基础(一)”部分我们介绍了一些 SQL 的基础知识,包括 SQL 查询语句的基础结构语法说明、日期时间、分组聚合、子查询和关联查询等内容。接下来我们继续介绍一些常用的 SQL 基础知识点。


常用日期函数和日期时间间隔使用


区块链的数据都按交易发生的时间先后顺序被记录保存,日常数据分析中经常需要对一段时间范围内对数据进行统计。上一部分介绍过的 date_trunc() 函数用于按指定的间隔(天、周、小时等)截断日期值。除此之外还有一些常用的函数和常见用法。


1. Now() 和 Current_Date() 函数


函数 now() 用于获取当前系统的日期和时间值。需要注意,其内部保存的是包括了时分秒值的,但是 Dune 的查询编辑器默认只显示到“时:分“。当我们要将日期字段跟价格表 prices.usd 中的 minute 字段进行关联时,必须先按分钟进行截取。否则可能关联不到正确的价格记录。


函数 current_date() 用于获取当前日期(不含时分秒部分)。当我们需要按日期、时间筛选数据时,常常需要结合使用它们其中之一,再结合相关日期时间函数来换算出需要的准确日期或者时间。函数 current_date() 相当于 date_trunc('day', now()),即对 now() 函数的值按“天”进行截取。还可以省略 current_date() 的括号,直接写成 current_date 形式。


select now() -- 当前系统日期和时间  ,current_date() -- 当前系统日期  ,current_date  -- 可以省略括号  ,date_trunc('day', now()) -- 与 current_date 相同


2. DateAdd()、Date_Add()、Date_Sub() 和 DateDiff() 函数


函数 dateadd(unit, value, expr) 在一个日期表达式上添加一个的日期时间单位。这里的“日期时间单位”使用常量表示,常用的有 HOUR、DAY、WEEK、MONTH 等。其中的 value 值可以为负数,表示从后面的表达式减去对应的日期时间单位。也正是因为可以用负数表示减去一个日期时间间隔,所以不需要也确实没有 datesub() 函数。


函数 date_add(startDate, numDays) 在一个日期表达式上加上或者减去指定的天数,返回另外一个日期。参数 numDays 为正数表示返回 startDate 之后指定天数的日期,为负表示返回之前指定天数的日期。函数 date_sub(startDate, numDays) 作用类似,但表示的意思正好相反,即负数表示返回之后的日期,正数表示之前的日期。


函数 datediff(endDate, startDate) 返回两个日期表达式之间间隔的天数。如果 endDate 在 startDate 之后,返回正值,在之前则返回负值。


SQL 示例如下:


select dateadd(MONTH, 2, current_date) -- 当前日期加 2 个月后的日期  ,dateadd(HOUR, 12, now()) -- 当前日期时间加 12 小时  ,dateadd(DAY, -2, current_date) -- 当前日期减去 2 天  ,date_add(current_date, 2) -- 当前日期加上 2 天  ,date_sub(current_date, -2) -- 当前日期减去 -2 天,相当于加上 2 天  ,date_add(current_date, -5) -- 当前日期加上 -5 天,相当于减去 5 天  ,date_sub(current_date, 5) -- 当前日期减去 5 天  ,datediff('2022-11-22', '2022-11-25') -- 结束日期早于开始日期,返回负值  ,datediff('2022-11-25', '2022-11-22') -- 结束日期晚于开始日期,返回正值


3. INTERVAL 类型


Interval 是一种数据类型,以指定的日期时间单位表示某个时间间隔。以 Interval 表示的时间间隔使用起来非常便利,避免被前面的几个名称相似、作用也类似的日期函数困扰。


select now() - interval '2 hours' -- 2 个小时之前  ,current_date - interval '7 days' -- 7 天之前  ,now() + interval '1 week' -- 一个星期之后的当前时刻


更多日期时间相关函数的说明,请参考​此处。


条件表达式 Case、If


当我们需要应用条件逻辑的时候,可以应用 case 语句。CASE 语句的常用语法格式为 CASE {WHEN cond1 THEN res1} [...] [ELSE def] END,它可以用多个不同的条件评估一个表达式,并返回第一个评估结果为真值(True)的条件后面的值,如果全部条件都不满足,则返回 else 后面的值。其中的 else 部分还可以省略,此时返回 NULL。


我们在“Lens 实践案例:创作者个人资料域名分析”部分就多次用到了 CASE 语句。其中部分代码摘录如下:


profiles_summary as (  select (      case        when length(short_name) >= 20 then 20 -- 域名长度大于 20 时,视为 20 对待        else length(short_name) -- 域名长度小于 20,直接使用其长度值      end) as name_length, -- 将 case 语句评估返回的结果命名为一个新的字段    handle_type,    count(*) as name_count  from profile_created  group by 1, 2),​profiles_total as (  select count(*) as total_profile_count,    sum(case        when handle_type = 'Pure Digits' then 1 -- 类型值等于给定值,返回 1        else 0 -- 类型值不等于给定值,返回 0      end    ) as pure_digit_profile_count,    sum(case         when handle_type = 'Pure Letters' then 1 -- 类型值等于给定值,返回 1        else 0 -- 类型值不等于给定值,返回 0      end    ) as pure_letter_profile_count  from profile_created)


可以看到,通过 CASE 语句,我们可以根据实际的需要对数据进行灵活的转换,方便后续的统计汇总。

上述示例查询的相关链接:


查询:​https://dune.com/queries/1535541

说明:​Lens 创作者个人资料域名分析


函数 if(cond, expr1, expr2) 或者 iff(cond, expr1, expr2) 互为同义词,可以交替使用,它们的作用时根据条件值评估的真假,返回两个表达式中的其中一个值。如果条件评估结果为真值,则返回第一个表达式,如果评估为假值,则返回第二个表达式。


select if(1 < 2, 'a', 'b') -- 条件评估结果为真,返回第一个表达式
  ,iff('x' > 'z', 'x > z', 'x <= z') -- 跟 if() 功能相同
  ,if('a' = 'A', 'case-insensitive', 'case-sensitive') -- 字符串值区分大小写


字符串处理的常用函数


Lower() 函数


Dune V2 引擎中,交易哈希值(hash)、用户地址、智能合约地址这些全部以小写字符格式保存。但是在字符串比较的时候,是区分大小写的。字符 a 和 A 是不同的,地址 0xbf16ef186e715668aa29cef57e2fd7f9d48adfe6 和 0XBF16EF186E715668AA29CEF57E2FD7F9D48ADFE6 比较是“不相等”的。所以我们需要将地址手动转换为全部小写再比较,或者使用 lower() 函数转换后比较。


select 'a' = 'A' -- 字符大小写不同,返回 false  ,'B' = 'B' -- 字符大小写相同,返回 true  ,'0xbf16ef186e715668aa29cef57e2fd7f9d48adfe6' = '0XBF16EF186E715668AA29CEF57E2FD7F9D48ADFE6' -- 大小写不同,返回 false  ,lower('0xbf16ef186e715668aa29cef57e2fd7f9d48adfe6') = lower('0XBF16EF186E715668AA29CEF57E2FD7F9D48ADFE6') -- 转换为小写后比较,返回 true


Substring() 函数


当有时我们因为某些特殊的原因不得不使用原始数据表 transactions 或 logs 并解析其中的 data 数据时,需要先从其中提取部分字符串,然后进行针对性的转换处理,此时就需要使用 Sbustring 函数。Substring 函数的语法格式为 substring(expr, pos [, len]) 或者 substring(expr FROM pos [FOR len] ] ),表示在表达式 expr 中,从位置 pos 开始,截取 len 个字符并返回。如果省略参数 len,则一直截取到字符串末尾。


Concat() 函数和 || 操作符


函数 concat(expr1, expr2 [, ...] ) 将多个表达式串接到一起,常用来链接字符串。操作符||的功能和 Concat 函数相同。


select concat('a', ' ', 'b', ' c') -- 连接多个字符串  , 'a' || ' ' || 'b' || ' c' -- 与 concat() 功能相同


bytea2numeric_v2() 函数


函数 bytea2numeric_v2(hex_string) 是 Dune 团队自定义的一个函数,其作用是将 16 进制格式存贮的数值转换为 10 进制的值。在 logs 这样的原始数据表里,数值是首先转换为 16 进制,然后每 64 个字符一组(不足 64 位的前面填充 0 补足位数),前后连接到一起,最前面再添加 0x 两个字符,最后存入 data 字段。当我们需要从 logs.data 数据解析这些具体的数值时,就需要反向做解析处理:从第 3 个字符开始,使用 Substring() 函数分别截取对应位置的 64 个字符,如果其存贮的是数值,则使用 bytea2numeric_v2() 函数转换为 10 进制值。


Right() 函数 函数 right(str, len) 从字符串 str 中返回右边开始计数的 len 个字符。如前所述,在 logs 这样的原始数据表里数据是按 64 个字符一组连接到一起后放入 data 里面的,对于合约地址或用户地址,其长度是 40 个字符,在保存时就会在左边填充 0 来补足 64 位长度。解析提取地址的时候,我们就需要提取右边的 40 个字符,再加上 0x 前缀将其还原为正确的地址格式。


下面是一个使用上述函数的一个综合例子,这个例子从 logs 表解析跨链到 Arbitrum 的记录:


select date_trunc('day', block_time) as block_date, -- 截取日期  concat('0x', right(substring(data, 3 + 64 * 2, 64), 40)) as address, -- 提取 data 中的第 3 部分转换为用户地址,从第 3 个字符开始,每 64 位为一组  concat('0x', right(substring(data, 3 + 64 * 3, 64), 40)) as token, -- 提取 data 中的第 4 部分转换为用户地址  substring(data, 3 + 64 * 4, 64) as hex_amount, -- 提取 data 中的第 5 部分  bytea2numeric_v2(substring(data, 3 + 64 * 4, 64)) as amount, -- 提取 data 中的第 5 部分,转换为 10 进制数值  tx_hashfrom ethereum.logswhere contract_address = '0x5427fefa711eff984124bfbb1ab6fbf5e3da1820'  -- Celer Network: cBridge V2   and topic1 = '0x89d8051e597ab4178a863a5190407b98abfeff406aa8db90c59af76612e58f01' -- Send  and substring(data, 3 + 64 * 5, 64) = '000000000000000000000000000000000000000000000000000000000000a4b1'  -- 42161,直接判断 16 进制值  and substring(data, 3 + 64 * 3, 64) = '000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2' -- WETH,直接判断 16 进制值  and block_time >= now() - interval '7 days'limit 10


上述示例查询的相关链接:



窗口函数


多行数据的组合成为窗口(Window)。对窗口中的一组行进行操作并根据该组行计算每一行的返回值的函数叫窗口函数。窗口函数对于处理任务很有用,例如计算移动平均值、计算累积统计量或在给定当前行的相对位置的情况下访问行的值。窗口函数的常用语法格式:


function OVER window_spec


其中,function 可以是排名窗口函数、分析窗口函数或者聚合函数。over 是固定必须使用的关键字。window_spec 部分又有两种可能的变化:partition by partition_feild order by order_field 或者 order by order_field,分别表示先分区再排序和不分区直接排序。除了把所有行当作同一个分组的情况外,分组函数必须配合 order by 来使用。


LEAD()、 LAG() 函数


Lead() 函数从分区内的后续行返回指定表达式的值。其语法为 lead(expr [, offset [, default] ] )。Lag() 函数从从分区中的前序行返回指定表达式的值。当我们需要将结果集中某一列的值,跟上一行或者下一行的相同列的值进行比较(当然也可以间隔多行取值)时,这两个函数就非常有用。


我们之前的教程中介绍过一个查询,用于统计 Uniswap V3 近 30 天每日新增资金池数量。其 SQL 为:


with pool_details as (  select date_trunc('day', evt_block_time) as block_date, evt_tx_hash, pool  from uniswap_v3_ethereum.Factory_evt_PoolCreated  where evt_block_time >= now() - interval '29 days')​select block_date, count(pool) as pool_countfrom pool_detailsgroup by 1order by 1


如果我们在目前的条形图基础上还希望添加一条曲线来显示每天新建资金池数量的变化情况,就可以使用 Lag() 函数来计算出每天相较于前一天的变化值,然后将其可视化。为了保持逻辑清晰,我们增加了一个 CTE,修改后的 SQL 如下:


with pool_details as (  select date_trunc('day', evt_block_time) as block_date, evt_tx_hash, pool  from uniswap_v3_ethereum.Factory_evt_PoolCreated  where evt_block_time >= now() - interval '29 days'),​pool_summary as (  select block_date,    count(pool) as pool_count  from pool_details  group by 1  order by 1)​select block_date,  pool_count,  lag(pool_count, 1) over (order by block_date) as pool_count_previous, -- 使用 Lag() 函数获取前一天的值  pool_count - (lag(pool_count, 1) over (order by block_date)) as pool_count_diff -- 相减得到变化值 from pool_summaryorder by block_date


将 pool_count_diff 添加到可视化图表(使用右侧坐标轴,图形类型选择 Line),效果如下图:



当我们需要向“前”对比不同行的数据时,就可以使用 Lead() 函数。比如,我们之前在 Lens 实例中介绍过发布帖子最多的创作者账号查询,我们将其做一些调整,返回发帖最多的 50 个账号,同时对比这👟账号发帖数量的差异(第一名和第二名之差、第二名和第三名之差,等等)。关键部分查询代码如下:


with post_data as (  -- 获取原始发帖详细数据,请参考完整 SQL 链接 ),​top_post_profiles as (  select profile_id,    count(*) as post_count  from post_data  group by 1  order by 2 desc  limit 50)​select row_number() over (order by post_count desc) as rank_id, -- 生成连续行号,用来表示排名  profile_id,  post_count,  lead(post_count, 1) over (order by post_count desc) as post_count_next, -- 获取下一行的发帖数据  post_count - (lead(post_count, 1) over (order by post_count desc)) as post_count_diff -- 计算当前行和下一行的发帖数量差 from top_post_profilesorder by post_count desc


查询结果如下图所示,其中可以看到有些账号之间的发帖数量差异很小:



完整的 SQL 参考链接:https://dune.com/queries/1647422

​​

Row_Number() 函数


Row_Number() 是一个排名类型的窗口函数,用于按照指定的排序方式生成不同的行号,从 1 开始连续编号。在上一个例子中,我们已经使用了 row_number() over (order by post_count desc) as rank_id 来生成行号用来表示排名,这里不再举例。如果结合 partition by 分区字句,Row_Number() 将在每一个分区内部从 1 开始编号。利用这个特性,我们可以用来实现一些高级筛选。例如,我们有一组 Token 地址,需要计算并返回他们最近 1 小时内的平均价格。考虑到 Dune 的数据会存在一到几分钟的延迟,如果按当前系统日期的“小时”数值筛选,并不一定总是能返回需要的价格数据。相对更安全的方法是扩大取值的时间范围,然后从中筛选出每个 Token 最近的那条记录。这样即使出现数据有几个小时的延迟的特殊情况,我们的查询仍然可以工作良好。此时我们可以使用 Row_Number() 函数结合 partition by 来按分区生成行号再根据行号筛选出需要的数据。


with latest_token_price as (  select date_trunc('hour', minute) as price_date, -- 按小时分组计算    contract_address,    symbol,    decimals,    avg(price) as price -- 计算平均价格  from prices.usd  where contract_address in (    '0xdac17f958d2ee523a2206206994597c13d831ec7',    '0x2260fac5e5542a773aa44fbcfedf7c193bc2c599',    '0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2',    '0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48',    '0x7fc66500c84a76ad7e9c93437bfc5ac33e2ddae9'  )  and minute > now() - interval '1 day' -- 取最后一天内的数据,确保即使数据有延迟也工作良好  group by 1, 2, 3, 4),​latest_token_price_row_num as (  select price_date,    contract_address,    symbol,    decimals,    price,    row_number() over (partition by contract_address order by price_date desc) as row_num -- 按分区单独生成行号  from latest_token_price)​select contract_address,  symbol,  decimals,  pricefrom latest_token_price_row_numwhere row_num = 1 -- 按行号筛选出每个 token 最新的平均价格


以上查询结果如下图所示:



完整的 SQL 参考链接:https://dune.com/queries/1647482

​​

窗口函数的更多完整资料:

​​

​​

Collect_List() 和 Collect_Set() 函数


如果你想将查询结果集中每一行数据的某一列合并到一起,可以使用 Collect_List() 函数。如果只需要唯一值,可以使用 Collect_Set() 函数。如果希望将多列数据都合并到一起(想象将查询结果导出为 CSV 的情形),你可以考虑用前面介绍的字符串连接的方式将多列数据合并为一列,然后再应用 Collect_List() 函数。这里举一个简单的例子:


select collect_list(contract_address) from(  select contract_address   from ethereum.logs  where block_time >= current_date  limit 10) t


总结


每一种数据库都有几十个甚至上百个内置的函数,而我们这里介绍的只是其中一小部分常用的函数。如果你想要成为熟练的数据分析师,我们强烈建议阅读并了解这里的每一个内置函数的用法。

【免责声明】市场有风险,投资需谨慎。本文不构成投资建议,用户应考虑本文中的任何意见、观点或结论是否符合其特定状况。据此投资,责任自负。

Sixdegree Lab
数据请求中
查看更多

推荐专栏

数据请求中
在 App 打开